Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[aqua(μ-vinylphosphonato)cadmium]

Laura K. Byington Congiardo, ${ }^{\text {a }}$ Joel T. Mague, ${ }^{\text {b }}$ Aaron R. Funk, ${ }^{\text {a }}$ Ria Yngard ${ }^{\text {a }}$ and D. Andrew Knight ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901, USA, and ${ }^{\text {b }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
Correspondence e-mail: aknight@fit.edu

Received 7 January 2011; accepted 1 March 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$; R factor $=0.020 ; w R$ factor $=0.053$; data-to-parameter ratio $=15.8$.

The title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{P}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, was obtained from vinylphosphonic acid and cadmium nitrate. The vinyl groups project into the interlamellar space and the structure is held together via van der Waals forces. The Cd^{2+} ion is sixcoordinate and the geometry is best described as distorted octahedral, with $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angles falling within the range 61.72 (13)-101.82 (14) ${ }^{\circ}$. Five of the coordinated oxygen atoms originate from the phosphonate group and the sixth from a bound water molecule. $\mathrm{Cd}-\mathrm{O}$ distances lie between 2.220 (3) and 2.394 (2) A. The water molecule is hydrogen bonded to a phosphonate oxygen atom.

Related literature

For the isotypic structure of $\left[\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, see: Menaa et al. (2002). For other cadmium organophosphonates, see: Cao et al. (1993); Hou et al. (2008); Bauer et al. (2007). For other metal phosphonates, see: Brody et al. (1984); Bujoli et al. (2001, 2007); Butcher et al. (2002); Cheetham et al. (1999); Clearfield et al. (1997); Clearfiled \& Wang (2002); Fan et al. (2007); Hu et al. (2003).

Experimental

Crystal data
$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{P}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=236.43$
Orthorhombic, $\mathrm{Pmn2}_{1}$
$V=288.01(6) \AA^{3}$
$Z=2$
$a=5.9020$ (7) \AA 。
$b=9.7792$ (12) \AA
$c=4.9901(6) \AA$
Mo $K \alpha$ radiation
$\mu=3.99 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.12 \times 0.11 \times 0.01 \mathrm{~mm}$

Data collection

Bruker APEX CCD area detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.656, T_{\max }=0.956$
2412 measured reflections 726 independent reflections 717 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.053$
$S=1.16$
726 reflections
46 parameters
7 restraints

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.50 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.50 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
303 Friedel pairs
Flack parameter: 0.05 (5)

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O}^{\text {i }}$	0.84	2.12	2.916 (4)	158

Data collection: SMART (Bruker, 2000); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: $X P$ in SHELXTL (Sheldrick, 2008b) and CrystalMaker (CrystalMaker, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

We would like to thank the National Science Foundation (grant No. DUE-0535957) and Florida Institute of Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2298).

References

Bauer, S., Marrot, J., Devic, T., Ferey, G. \& Stock, N. (2007). Inorg. Chem. 46, 9998-10002.
Brody, J. F., Jacobson, A. J., Johnson, J. W. \& Lewandoski, J. T. (1984). Inorg. Chem. 23, 3842-3844.
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bujoli, B., Butcher, R. J., Congiardo, L. K. B., Deschamps, J. R., Dressick, W. J., Henley, L., Klug, C. A., Knight, D. A., Schull, T. L. \& Swider-Lyons, K. (2007). Organometallics, 26, 2272-2276.

Bujoli, B., Janvier, P., Maillet, C., Pipelier, M. \& Praveen, T. (2001). Chem. Mater. 13, 2879-2884.
Butcher, R. J., Harper, B. A., Knight, D. A., Kim, V. \& Schull, T. L. (2002). Dalton Trans. pp. 824-826.
Cao, G., Lynch, V. M. \& Yacullo, L. N. (1993). Chem. Mater. 5, 1000-1006.
Cheetham, A. K., Ferey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.

metal-organic compounds

Clearfield, A., Poojary, D. M. \& Zhang, B. (1997). J. Am. Chem. Soc. 119, 12550-12559.
Clearfield, A. \& Wang, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 2937-2947. CrystalMaker (2010). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.
Fan, Y., Han, H., Hou, H. \& Wu, J. (2007). Inorg. Chem. 46, 7960-7970.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Hou, S.-Z., Cao, D.-K., Li, Y.-Z, \& Zheng, L.-M. (2008). Inorg. Chem. 47, 10211-10213.
Hu, A., Lin, W. \& Ngo, H. L. (2003). Angew. Chem. Int. Ed. 42, 6000-6003. Menaa, B., Kariuki, B. M. \& Shannon, I. J. (2002). New J. Chem. 26, 906-909. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m450-m451 [doi:10.1107/S160053681100780X]

Poly[aqua(μ-vinylphosphonato)cadmium]

L. K. B. Congiardo, J. T. Mague, A. R. Funk, R. Yngard and D. A. Knight

Comment

Layered metal phosphonates as materials have potentially useful properties such as ion-exchange, catalysis, and homogeneous catalysis supports (Brody et al., 1984; Cheetham et al., 1999; Clearfield et al., 2002, 1997; Fan et al., 2007). One of our recent objectives has been the preparation of covalently-bonded and catalytically active organometallic phosphonates which retain certain desirable features of a homogeneous catalyst (e.g. high activity and selectivity) and of the inorganic support (e.g. chemical and thermal stability, ease of catalyst grafting). These objectives may be realised via two possible methods: A. condensation of a pre-formed phosphonic acid functionalized coordination complex with di-, tri- or tetravalent metal salts, and B. post-synthetic modification of a layered metal phosphonate. Examples of Method A include TiO Ti_{2}-phosphonate supported rhodium bipyridine complexes for asymmetric hydrogenation of prochiral ketones (Bujoli et al., 2001); ZrO_{2}-phosphonate supported Ru-BINAP complexes for asymmetric hydrogenation of ketones and β-keto esters (Hu et al., 2003), and TiO_{2}-phosphonate supported cobalt phosphine carbonyl complexes for the hydroformylation of olefins (Bujoli et al., 2007). In each of these examples, the catalytically active hybrid organometallic-inorganic phosphonate possesses quite different selectivities for organic transformation when compared to the homogeneous, unsupported counterparts. Examples of Method B are much rarer - no doubt in part due to the sterically constrained nature of layered metal phosphonates. The ability of such phosphonates to undergo a post-synthetic reaction with a catalytically active metal complex is dependent on the interlayer spacing present which is often only a few Ångstroms. Our own studies have shown that the interaction of metal vinylphosphonates $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cu}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Zn}$ with rhodium(III) chloride in aqueous media does not result in the formation of an intact layered organometallic material but instead results in facile delamination of the layered phosphonate and which we tentatively ascribed to a $\mathrm{Rh}(\mathrm{III})$ - π-vinyl interaction (Butcher et al., 2002). Herein we describe the synthesis, characterization and X-ray structure of a layered cadmium vinylphosphonate and subsequent reaction with rhodium chloride.

Single crystals of the title compound were obtained from the reaction of vinylphosphonic acid and cadmium nitrate tetrahydrate in water under conditions of slowly increasing pH . The structure is isotypic with that of the layered zinc analogue in which the vinyl groups project into the interlamellar space and is held together via Van der Waals forces (Menaa et al., 2002). The Cd^{2+} ion is six-coordinate and the geometry is best described as distorted octahedral, with $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angles falling within the range $61.72(13)-101.82(14)^{\circ}$. Five of the coordinated oxygen atoms originate from the phosphonate group and the sixth, O3, from a bound water molecule. Cd-O distances lie between 2.220 (3) and 2.394 (2) Å, longer than those found in the zinc analog consistent with an increase in metal ionic radius, but similar to those found in previously reported layered cadmium organophosphonates. The structure of cadmium vinylphosphonate monohydrate is layered and Figure 2 shows a view down the c axis illustrating the lamellar nature of the material. The phosphorus atom is tetrahedrally coordinated, with a phosphorus-cadmium distance of 2.979 (1) \AA. This longer than the $\mathrm{Zn}-\mathrm{P}$ bond found in zinc vinylphosphonate $(2.800 \AA)$ which is predicted based on the larger cadmium ion (Menaa et al., 2002). Two oxygen atoms from the same phosphonate $-\mathrm{PO}_{3}$ group chelate to the cadmium ion in a bidentate fashion. Each coordinated water molecule hydrogen bonds to oxygen atom O 3 as listed in Table 2. The closest carbon-carbon interaction within a single layer is 4.990 (1) \AA and across two layers is $3.816(8) \AA$. The infra-red spectrum of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ recorded as a KBr pellet contains

supplementary materials

a single broad band centered at $3478 \mathrm{~cm}^{-1}$ corresponding to the cadmium-coordinated water $\mathrm{O}-\mathrm{H}$ stretching mode and a band at $1614 \mathrm{~cm}^{-1}$ due to the bending mode. The spectrum also contains two intense bands at 1101 and $964 \mathrm{~cm}^{-1}$ correspond to $-\mathrm{PO}_{3}$ stretching modes and a weaker band at $747 \mathrm{~cm}^{-1}$ belonging to the monosubstituted vinyl moiety. These bands are similar to those found in hydrated copper vinylphosphonate (Butcher et al., 2002). A thermal gravimetric analysis was also performed on crystals of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and indicated weight losses of 8.0% at $189.1^{\circ} \mathrm{C}$ and 7.1% at $520.2^{\circ} \mathrm{C}$ which correspond to dehydration and loss of the vinyl portion of the phosphonate respectively. The reactivity of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right]$. $\mathrm{H}_{2} \mathrm{O}$ with rhodium(III) chloride was briefly investigated. A suspension of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in aqueous rhodium chloride was allowed to react with stirring for several weeks under nitrogen. Disappearance of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and formation of a rhodium mirror on the surface of the reaction flask suggested reduction of rhodium(III) to rhodium metal. The mechanism for this redox reaction is currently being investigated and will be reported in due course.

Experimental

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$: A 1000 ml round bottom flask was charged with cadmium nitrate tetrahydrate $(8.915 \mathrm{~g}, 28.90 \mathrm{mmol})$, vinylphosphonic acid ($3.117 \mathrm{~g}, 28.85 \mathrm{mmol}$), and de-ionized water (175 ml). Urea ($1.69 \mathrm{~g}, 28.2 \mathrm{mmol}$) was added to the solution, followed by an aqueous solution of $\mathrm{NaOH}(0.10 M)$, until the pH reached 2.8 . The solution was heated in an oil-bath at $70{ }^{\circ} \mathrm{C}$ for 9 days. The resulting crystals were collected by filtration and dried in air to give $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ as colorless plates $(6.434 \mathrm{~g}, 94 \%)$. Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CdO}_{4} \mathrm{P}: \mathrm{C}, 10.16 ; \mathrm{H}, 2.13$. Found: C, 10.43; H, 2.10.

Refinement

H-atoms were placed in locations derived from a difference map and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Floating origin restraint required by space group. Atom C2 appears disordered across the mirror on the basis of its value for $U_{\text {iso }}$ which is noticeably larger than that of C1. However, no satisfactory 2-site model could be devised to model this despite considerable effort. As a result, the displacement parameters for this atom was restrained to approximate isotropic behavior (ISOR 0.01).

Figures

Fig. 1. Thermal ellipsoid diagram (50% probability level) of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$. Symmetryrelated P and O atoms with labels $\mathrm{A}-\mathrm{E}$ are generated by the operations: $\mathrm{A}: x, y, 1-z ; \mathrm{B}: x, 2-y$, $z-0.5$; C: $-x, y, z-1$; D: $x-0.5,2-y, z-0.5$; E: $-x, y, z$

Fig. 2. Representation of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{PO}_{3} \mathrm{Cd}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ showing layered structure (view along c axis).

Poly[aqua(μ-vinylphosphonato)cadmium]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{P}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=236.43$
Orthorhombic, Pmn_{2}
Hall symbol: P 2ac -2
$a=5.9020$ (7) \AA
$b=9.7792(12) \AA$
$c=4.9901(6) \AA$
$V=288.01(6) \AA^{3}$
$Z=2$

Data collection

Bruker APEX CCD area detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.656, T_{\text {max }}=0.956$
2412 measured reflections
$F(000)=224$
$D_{\mathrm{x}}=2.726 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2302 reflections
$\theta=4.0-28.2^{\circ}$
$\mu=3.99 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.12 \times 0.11 \times 0.01 \mathrm{~mm}$

726 independent reflections
717 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\max }=28.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-6 \rightarrow 6$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.053$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0351 P)^{2}+0.0408 P\right]$
$S=1.16$
726 reflections
46 parameters
7 restraints
Primary atom site location: heavy-atom method
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.50 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}
Absolute structure: Flack (1983), 303 Friedel pairs
Flack parameter: 0.05 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F 2 . The threshold expression of $\mathrm{F} 2>2 \mathrm{~s}(\mathrm{~F} 2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger. Atom C 2 appears disordered across the mirror on the basis of its value for $U_{\text {iso }}$ which is noticeably larger than that of C1. However, no satisfactory 2-site model could be devised. CCDC-784849 contains the supplementary crystallographic data for this article. These data can be obtained free of charge at http:// www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Center (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (0)1223-336033; email: deposit@ccdc.cam.ac.uk].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd1	0.0000	$1.02972(3)$	$0.10825(10)$	$0.01148(12)$
P2	0.0000	$0.81874(14)$	$0.6776(2)$	$0.0107(2)$
O1	0.0000	$1.1926(4)$	$-0.2266(7)$	$0.0152(7)$
H1O	0.1018	1.1927	-0.3443	0.018^{*}
O2	0.0000	$0.8471(4)$	$0.3805(7)$	$0.0164(8)$
O3	$0.2081(4)$	$0.8782(3)$	$0.8230(5)$	$0.0132(5)$
C1	0.0000	$0.6369(6)$	$0.7329(12)$	$0.0220(12)$
H1	0.0000	0.6182	0.9433	0.026^{*}
C2	0.0000	$0.5472(8)$	$0.550(3)$	$0.067(4)$
H2A	0.0000	0.4540	0.6052	0.080^{*}
H2B	0.0000	0.5729	0.3668	0.080^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.01300(17)$	$0.01407(18)$	$0.00737(16)$	0.000	0.000	$-0.00103(15)$
P2	$0.0131(5)$	$0.0110(5)$	$0.0080(6)$	0.000	0.000	$0.0007(4)$
O1	$0.0150(18)$	$0.0198(18)$	$0.0109(17)$	0.000	0.000	$0.0009(14)$
O2	$0.025(2)$	$0.0153(19)$	$0.0088(19)$	0.000	0.000	$-0.0009(15)$
O3	$0.0121(12)$	$0.0167(12)$	$0.0110(10)$	$0.0003(9)$	$0.0020(10)$	$-0.0003(8)$
C1	$0.030(3)$	$0.013(2)$	$0.023(3)$	0.000	0.000	$0.001(2)$
C2	$0.087(7)$	$0.034(4)$	$0.079(8)$	0.000	0.000	$0.000(4)$

sup-4

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {i }}$	2.220 (3)	$\mathrm{P} 2-\mathrm{Cd1}{ }^{\text {iv }}$	2.9791 (13)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.244 (4)	$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.8400
$\mathrm{Cd1}-\mathrm{O} 1$	2.309 (4)	O3-Cd1 ${ }^{\text {v }}$	2.220 (3)
Cd1-O3 ${ }^{\text {ii }}$	2.394 (2)	O3-Cd1 ${ }^{\text {iv }}$	2.394 (2)
Cd1-P2 ${ }^{\text {iii }}$	2.9791 (13)	$\mathrm{C} 1-\mathrm{C} 2$	1.265 (14)
P2-O2	1.508 (4)	C1-H1	1.0659
$\mathrm{P} 2-\mathrm{O} 3$	1.540 (3)	C2-H2A	0.9509
$\mathrm{P} 2-\mathrm{C} 1$	1.799 (6)	C2-H2B	0.9500
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3^{\text {vi }}$	101.82 (14)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{C} 1$	109.4 (3)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2$	91.76 (9)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{Cl}$	107.50 (16)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1$	93.98 (9)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{Cd1}{ }^{\text {iv }}$	125.58 (17)
$\mathrm{O} 2-\mathrm{Cd1}-\mathrm{O} 1$	170.89 (13)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{Cd1}{ }^{\text {iv }}$	53.05 (10)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {ii }}$	159.44 (11)	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{Cd} 1^{\text {iv }}$	125.0 (2)
$\mathrm{O} 3^{\mathrm{vi}}-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {ii }}$	98.05 (6)	Cd1-O1-H1O	120.4
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {ii }}$	82.37 (10)	$\mathrm{P} 2-\mathrm{O} 2-\mathrm{Cd} 1$	137.8 (2)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3^{\text {ii }}$	89.82 (11)	$\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\mathrm{V}}$	123.01 (15)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {iii }}$	159.44 (11)	$\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\text {iv }}$	96.01 (12)
$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 3{ }^{\text {iii }}$	61.72 (13)	$\mathrm{Cd} 1{ }^{\mathrm{v}}-\mathrm{O} 3-\mathrm{Cd1}{ }^{\text {iv }}$	115.72 (11)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{P} 2^{\text {iii }}$	128.99 (7)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 2$	125.1 (7)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{P} 2{ }^{\text {iii }}$	83.42 (10)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	126.2
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{P} 2{ }^{\text {iii }}$	87.47 (10)	$\mathrm{P} 2-\mathrm{C} 1-\mathrm{H} 1$	108.7
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{P} 2{ }^{\text {iii }}$	30.94 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.2
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 3$	113.18 (14)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	120.7
$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 3{ }^{\text {vii }}$	105.8 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	122.1
$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 2-\mathrm{Cd} 1$	-60.15 (14)	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\text {v }}$	112.9 (2)
$\mathrm{O} 3{ }^{\text {vii }} \mathrm{P} 2-\mathrm{O} 2-\mathrm{Cd} 1$	60.15 (14)	$\mathrm{Cd} 1{ }^{\text {iv }}-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd1} 1^{\text {v }}$	-126.1 (2)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{P} 2$	50.94 (7)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd1}{ }^{\text {iv }}$	118.03 (17)
$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{P} 2$	-50.94 (7)	$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\text {iv }}$	-6.4 (2)
$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{P} 2$	-148.83 (7)	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd} 1^{\text {iv }}$	-121.04 (19)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 2-\mathrm{P} 2$	148.83 (7)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{C} 1-\mathrm{C} 2$	-123.27 (12)
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd1}{ }^{\text {v }}$	-8.0 (3)	$\mathrm{O}{ }^{\text {vii }} \mathrm{P} 2-\mathrm{C} 1-\mathrm{C} 2$	123.27 (12)
$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{P} 2-\mathrm{O} 3-\mathrm{Cd1}{ }^{\mathrm{v}}$	-132.49 (11)		

Symmetry codes: (i) $-x+1 / 2,-y+2, z-1 / 2$; (ii) $-x, y, z-1$; (iii) $x, y, z-1$; (iv) $x, y, z+1$; (v) $-x+1 / 2,-y+2, z+1 / 2$; (vi) $x-1 / 2,-y+2, z-1 / 2$; (vii) $-x, y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{O}^{\text {viii }}$	0.84	2.12	$2.916(4)$	158

Symmetry codes: (viii) $-x+1 / 2,-y+2, z-3 / 2$.

supplementary materials

Fig. 1

Fig. 2

